
SPR Distance Computation for Unrooted Trees

Glenn Hickey ∗ Frank Dehne † Andrew Rau-Chaplin ‡ Christian Blouin §

Abstract: The subtree prune and regraft distance (dSPR) between phylogenetic trees is important
both as a general means of comparing phylogenetic tree topologies as well as a measure of lateral
gene transfer (LGT). Although there has been extensive study on the computation of dSPR and
similar metrics between rooted trees, much less is known about SPR distances for unrooted trees,
which often arise in practice when the root is unresolved. We show that unrooted SPR distance
computation is NP-Hard and verify which techniques from related work can and cannot be applied.
We then present an efficient heuristic algorithm for this problem and benchmark it on a variety of
synthetic datasets. Our algorithm computes the exact SPR distance between unrooted tree, and
the heuristic element is only with respect to the algorithm’s computation time. Our method is a
heuristic version of a fixed parameter tractability (FPT) approach and our experiments indicate that
the running time behaves similar to FPT algorithms. For real data sets, our algorithm was able to
quickly compute dSPR for the majority of trees that were part of a study of LGT in 144 prokaryotic
genomes. Our analysis of its performance, especially with respect to searching and reduction rules,
is applicable to computing many related distance measures.

Keywords: Unrooted trees, SPR distance, lateral gene transfer, phylogenetic tree metrics

1 Introduction

Phylogenetic trees are used to describe evolutionary relationships. DNA or protein se-
quences are associated with the leaves of the tree and the internal nodes correspond to
speciation or gene duplication events. In order to model ancestor-descendant relationships
on the tree, a direction must be associated with its edges by assigning a root. Often, insuffi-
cient information exists to determine the root and the tree is left unrooted. Unrooted trees
still provide a notion of evolutionary relationship between organisms even if the direction
of descent remains unknown.

The phylogenetic tree representation has recently come under scrutiny with critics claim-
ing that it is too simple to properly model microbial evolution, particularly in the presence
of lateral gene transfer (LGT) events (Doolittle 1999). A LGT is the transfer of genetic
material between species by means other than inheritance and thus cannot be represented
in a tree as it would create a cycle. The prevalence of LGT events in microbial evolution
can, however, still be studied using phylogenetic trees. Given a pair of trees describing the
same sets of species, each constructed using different sets of genes, a LGT event corresponds
to a displacement of a common subtree, referred to as a SPR operation. The SPR distance
is the minimum number of SPR operations, denoted by dSPR, that explain the topological
differences between a pair of trees. It is equivalent to the number of transfers in the most

∗Corresponding Author. School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6.
Tel: +1 (613) 520-2600 ext.4588, Email: ghickey@scs.carleton.ca

†School of Computer Science, Carleton University, Ottawa, Canada, http://www.dehne.net
‡Faculty of Computer Science, Dalhousie University, Halifax, Canada, http://users.cs.dal.ca/∼arc
§Faculty of Computer Science, Dalhousie University, Halifax, Canada, cblouin@cs.dal.ca

1

frank
Text Box
To appear in Evolutionary Bioinformatics

parsimonious LGT scenario (Beiko & Hamilton 2006). In general, dSPR can be used as a
measure of the topological difference between two trees, e.g. for comparing the outputs of
different tree construction algorithms.

Tree bisection and reconnection (TBR) is a generalization of SPR that allows the pruned
subtree to be rerooted before being regrafted. Computation of the TBR distance (dTBR)
was shown to be NP-hard by (Allen & Steel 2001), who also provided two rules that re-
duce two input trees to a size that is a linear functions of dTBR without altering their
distance. These rules, which reduce common chains and subtrees, also form the basis of
algorithms that compute the SPR distance between rooted trees (drSPR) (Bordewich &
Semple 2004) as well as hybridization number (h) (Bordewich et al. 2007), see Section 3.3.
Such algorithms proceed as follows. First the distance problem is shown to be equivalent
to counting components of a maximum agreement forest, and then it is shown that the
application of the rules do not alter the number of components in the forest. These steps
have been successfully applied to dTBR, drSPR and h but not dSPR, for which no equivalent
agreement forest problem is known. As a consequence, the computational complexity of
dSPR has remained an open problem. We provide a proof of NP-Hardness in Section 2. In
Section 3, we present an efficient algorithm that relies only on the subtree reduction rule
to compute the SPR distance of unrooted trees. An implementation of this algorithm was
tested on a variety of data, and the results are analyzed in Section 4. In particular, we show
that the conjecture that chain decomposition is dSPR-preserving for unrooted trees (Allen
& Steel 2001) is strongly supported by our data.

The contributions of this paper can be summarized as follows: (1) We show that SPR
distance computation is NP-hard for unrooted trees. (2) We present an efficient heuristic
algorithm for this problem and benchmark it on a variety of synthetic datasets. Our algo-
rithm computes the exact SPR distance between unrooted trees, and the heuristic element
is only with respect to the algorithm’s computation time. Our method is a heuristic version
of a fixed parameter tractability (FPT) approach (Downey & Fellows 1998) and our exper-
iments indicate that the running time behaves similar to FPT algorithms. For real data
sets, our algorithm was able to quickly compute dSPR for the majority of trees that were
part of a study of LGT in 144 prokaryotic genomes. (3) Our analysis of its performance,
especially with respect to searching and reduction rules, is applicable to computing many
related distance measures. (4) In (Bordewich et al. 2007), a decomposition by common
clusters was used with significant practical success. We show that such a decomposing by
common clusters cannot be used to compute exact SPR distance for unrooted trees (Figure
4) which is somewhat counterintuitve.

2 SPR Distance Computation is NP-Hard for Unrooted Trees

In (Hein et al. 1996), it was shown that computing the size of a the Maximum Agreement
Forest (MAF) of two trees is NP-Hard by reducing it from Exact Cover of 3-Sets (X3C).
Later, (Allen & Steel 2001) proved that this result is insufficient to show the hardness
of unrooted SPR distance because there is no direct relationship between MAF size and
dSPR, as was previously claimed. Similar techniques have since been used in (Bordewich &
Semple 2004) to show that rooted SPR distance is NP-Hard via reduction from X3C to a
rooted version of MAF. We show that although dSPR cannot be used to compute |MAF |
in general, it can for the trees used in the polynomial-time reduction from X3C and this is
sufficient to show that dSPR is NP-Hard as well. We begin with two preliminary definitions

2

Definition 2.1. An agreement forest for two trees is any common forest that can be ob-
tained from both trees by cutting the same number of edges from each tree, applying forced
contractions after each cut. A maximum agreement forest (MAF) for two trees is an agree-
ment forest with a minimum number of components. (Hein et al. 1996)

Definition 2.2. The exact cover by 3-sets (X3C) problem is defined as follows (Garey &
Johnson 1979): Given a set X with |X| = n = 3q and a collection C of m 3-element subsets
of X. Does C contain an exact cover for X, ie, a sub-collection C ′ ⊆ C such that every
element of X occurs in exactly one member of C ′?

NOTE: This problem remains NP-Complete if no element occurs in more than three
subsets. Also note that this problem remains NP-Complete if each element occurs in exactly
three subsets. This second property is implied by (Hein et al. 1996) though never explicitly
stated. A supplemental proof is provided in Appendix A.

We now review the polynomial-time reduction from X3C to MAF provided by (Hein
et al. 1996), clarifying their notation to reflect that each element of X belongs to exactly
three subsets in C, ie |X| = |C| = 3q = m = n, a fact implied but not clearly stated in
their paper. An instance of X3C is transformed into two rooted phylogenetic trees shown
in Figure 1. Each element of X is represented by a triplet of the form {a, u, v} and each
triplet appears 3 times in each tree, once for each occurrence in a subset in C. Tree T1 is
illustrated in Figure 1(a). Each subtree Ai ∈ T1, shown in Figure 1(b) corresponds to a
subset ci ∈ C. Each subtree of Ai induced by the triple {ai,j , ui,j , vi,j} where j ∈ {1, 2, 3}
corresponds to a single element of X.

Tree T2, shown in Figure 1(c), has the same leaf set as T1 but a different topology. Each
Di subtree of T2, as seen in Figure 1(e), corresponds to a subset in C except only the a-part
of each triplet is present. Each Bi subtree of T2, as seen in Figure 1(d), corresponds to
an element in X. Each such element x = {a, u, v} in the set X appears in three different
subsets of C: cj , ck, and cl. Without loss of generality, assume it consists of the first element
of cj , second element of ck, and third element of cl. The corresponding B tree would have
leaves {uj,j′ , uk,k′ , ul,l′ , vj,j′ , vk,k′ , vl,l′} where j′ = 1, k′ = 2, l′ = 3.

(Hein et al. 1996) show that |MAF (T1, T2)| = 20q +1 if and only if C contains an exact
cover of X. Note that we have added the z leaf to these trees, unrooting them. This does
not have any affect on the |MAF | as z can remain attached to x1 in the agreement forest
without the addition of any new components.

Proving that dSPR(T1, T2) = |MAF (T1, T2)−1| is sufficient to transform any instance of
X3C where |X| = |C| = 3q to an instance of dSPR. In fact, it is sufficient to show that the
inequality dSPR(T1, T2) ≤ |MAF (T1, T2) − 1| is true as dSPR(T1, T2) ≥ |MAF (T1, T2) − 1|
follows from Lemma 2.7(b) and Theorem 2.13 from (Allen & Steel 2001). We proceed much
in the same way as the original proof, noting that each SPR operation used to transform
to T1 to T2 corresponds to a cut required to form their MAF.

MAF (T1, T2) is formed by the cutting edges from Ai subtrees (and the corresponding
subtrees in T2) in either of two possible ways (Hein et al. 1996):

1. Cut leaves ui,1, vi,1, ui,2, vi,2, ui,3, vi,3 and then prune the remaining subtree formed by
leaves {ai,1, ai,2, ai,3}. Such a procedure contributes 7 components to the MAF.

2. Cut the leaves ai,1, ai,2, ai,3 then cut each of the remaining two-leaf subtrees: {ui,1, vi,1},
{ui,2, vi,2}, and {ui,3, vi,3}. These operations contribute 6 components to the MAF

3

n

z

x
x

x
x

x

2

1

3

4

2n−1x
2n

y
1 y

2n−1
y

2n

A1

A2

A

(a) Tree T1

a
i,3

v
i,3

u
i,3

a
i,2

v
i,2

u
i,2

u
i,1

a
i,1

i,1
v

(b) Subtree Ai

n−1

1

2

3

4

2

x
x

z

2n−1

2n

1

2
x
2n

B
1y
y

B
y

y

n

n

B
y

y

D1

D D

(c) Tree T2

k,k’ v
l,l’

v
v

u
u

u

j,j’

k,k’

l,l’

j,j’

(d) Subtree Bi

i,3

a
a a

i,1

i,2

(e) Subtree Di

Figure 1: Reduction of an instance of X3C to |MAF (T1, T2)| from an {a, u, v} triplet. The
instance of X3C has a solution if and only if |MAF (T1, T2)| = 20q + 1 (where n = 3q).

4

v2

6

7

1
3 4 5

u

(a)

u

4

v

6

7

5

32

1

(b)

54

v’

u1

32

v

6

7

(c)

4 v’

u1

32

6

7

5

(d)

Figure 2: (a) Original tree. (b) Edge uv is removed, pruning subtree rooted at u. (c)
Subtree is regrafted, creating new vertex v′. (d) Degree-2 vertex v is contracted.

We now show that given two trees T1 and T2 and their MAF, which was created using
the above cut operations, there exists |MAF | − 1 SPR operations that can transform T1

to T2. In particular, for each set of cut operations, there exists an equivalent set of SPR
operations.

1. Prune leaves ui,1, vi,1, ui,2, vi,2, ui,3, vi,3 from Ai and regraft them onto the chain, form-
ing Bi subtrees in the required positions. Prune the subtree {ai,1, ai,2, ai,3} and regraft
into the position of Di. In this case, 7 SPR operations are performed.

2. Prune the leaves ai,1, ai,2, ai,3 and regraft them onto the chain, forming a Di subtree
in the proper position. Prune the remaining two-leaf subtrees: {ui,1, vi,1}, {ui,2, vi,2},
and {ui,3, vi,3} and regraft them onto the chain, forming Bi subtree components in
the required position. 6 SPR operations are used.

There is a one-to-one correspondence between cuts formed when creating the MAF and
SPR operations that can transform T1 to T2. Thus dSPR(T1, T2) ≤ |MAF (T1, T2)| − 1 and
the proof is completed.

3 Algorithm for dSPR Computation

3.1 Definitions

All trees referred to in this paper, unless otherwise stated, are unrooted binary phylogenetic
trees. Such trees have interior vertices of degree 3 and uniquely labeled leaves. Given a
tree T , let V (T), L(T) and E(T) ∈ {V (T)× V (T)} be the vertex, leaf, and edge sets of T
respectively. A tree can be rooted by adding a root vertex of degree 2. A pendant subtree
of T is any rooted tree T ′ such that V (T ′) ⊆ V (T), L(T ′) ⊆ L(T) and E(T ′) ⊆ E(T). A
SPR operation on a tree T is defined by the following three steps, illustrated in Figure 2.
First, an edge {u, v} ∈ E(T) is removed, effectively pruning a pendant subtree rooted at u
from T . A new interior vertex w is created by subdividing an edge in T and the subtree
is then regrafted by creating edge {u, w}. Finally, the degree-2 vertex v is contracted by
identifying its incident edges. The SPR distance between T1 and T2, denoted dSPR(T1, T2),
is the minimum number of SPR operations required to transform T1 into T2. Furthermore,
dSPR is a metric (Allen & Steel 2001).

5

3.2 Exhaustive Search

The reduction rules referred to above only serve to transform the original problem into
smaller subproblems. These subproblems must still be solved with an exhaustive search as
the problem is NP-Hard (see proof in Appendix). Let GSPR(n) be the graph such that each
vertex in the graph is associated with a unique tree topology with n leaves, and all possible
topologies are in the graph. A pair of vertices in this graph are connected if their SPR
distance is 1. Computing dSPR(T1, T2) is therefore equivalent to finding the length of the
shortest path between T1 and T2 on GSPR(n) and can be computed through an exhaustive
breadth-first search beginning at T1. In (Allen & Steel 2001), it was shown that each tree
will have O(n2) neighbors in the graph and it follows that the search will visit O(n2) trees
of distance 1 from T1, O(n4) trees of distance 2, up to O(n2k) trees of distance k. A hash
table is kept to ensure the same tree is not visited twice. Assuming that it can be updated
in constant time, each tree can be processed in O(n) bringing the time and space complexity
of the search to O(n2k+1).

While it is still an open problem to determine if reduction rules can be found to reduce
n to k in the asymptotic complexity above, the value of the exponent can be reduced
significantly. Observe that there must be some tree T ′ such that dSPR(T1, T

′) = ⌊k/2⌋ and
dSPR(T2, T

′) = ⌈k/2⌉ because dSPR is a metric and therefore satisfies the triangle inequality.
T ′ and, correspondingly, k can be computed by performing two breadth-first searches, with
origins at T1 and T2 simultaneously. During the ith iteration of the search, all trees of
distance i from first T1 then T2 are explored and updated into the same hash table. T ′ is
the first tree to be found by both searches and dSPR(T1, T2) is 2i − 1 if T ′ is found in the
search for T1 or 2i otherwise. Pseudocode is given in Algorithm 1. The time complexity of
this algorithm is O(n⌊k/2⌋+1)+O(n⌈k/2⌉+1) = O(nk+2). This is a significant reduction from
the simple search but the complexity is still prohibitive. Fortunately, heuristics can greatly
speed up many instances of the problem while still guaranteeing an exact answer.

3.3 Heuristic Improvements

A subtree reduction replaces any pendant subtree that occurs in both input trees by a single
leaf with a new label in each tree as as shown in Figure 3(a). A chain reduction, illustrated
in 3(b), replaces any chain of pendant subtrees that occur identically in both trees by three
new leaves with new labels correctly oriented to preserve the direction. (Allen & Steel 2001)
showed that maximum application of both of these rules reduces the size of the input trees
to a linear function of dTBR. This result also holds for dSPR as dSPR ≤ 2dTBR for two
trees since each TBR operation can be replaced by 2 SPR operations. It is trivial to show
that subtree reductions do not alter dSPR but, unlike dTBR it is presently unknown whether
or not chain reductions affect dSPR, therefore they can not be used in an exact algorithm.
However, our experimental results, further described in Section 4, do support the conjecture
that chain reductions do not affect SPR distance.

In addition to applying reductions on the input trees, intermediate trees visited during
the breadth-first search can be likewise reduced. For example, if T ∗ is a tree found on
the ith iteration from T1 that has a common pendant subtree with T2, then that subtree
can be reduced to a leaf in T ∗ and T2 without affecting dSPR(T ∗, T2). Accordingly, the
shortest path from T1 to T2 will still be found by a search that applies subtree reductions
to the intermediate trees. For ease of maintaining the hash table of trees visited, in our
implementation we flag common subtrees rather than remove them and use these flags to

6

Algorithm 1 SPRDIST(T1, T2)

1: if T1 = T2 then

2: return 0
3: end if

4: Apply subtree reductions to T1 and T2

5: d← 0
6: H ← empty hash table
7: L1,LA ← empty lists
8: Insert T1 into L1

9: Insert T2 into LA

10: loop

11: L2,LB ← empty lists
12: if ITERATE(L1, L2, H, T2) = TRUE then

13: return d
14: else

15: L1 ← L2

16: d← d + 1
17: end if

18: if ITERATE(LA, LB, H, T1) = TRUE then

19: return d
20: else

21: LA ← LB

22: d← d + 1
23: end if

24: end loop

Algorithm 2 ITERATE(Lin, Lout, H, T)

1: for all t ∈ Lin do

2: if t ∈ H then

3: return TRUE
4: else

5: Append set of SPR neighbors of t to Lout

6: Insert t into H
7: end if

8: end for

9: return FALSE

S
x

(a)

1 2 3 nc c c c 321x x x

(b)

Figure 3: Reduction rules applied to a tree. (a) A subtree is reduced to a leaf. (b) A chain
of length n is reduced to a chain of length 3.

7

avoid performing SPR operations that would prune from or regraft to flagged subtrees.
This process has no adverse effect on the asymptotic complexity of the search as common
subtrees and chains can be detected in O(n). It is expected that performing reductions on
intermediate trees will lessen the total number of trees searched but we are unable to show
that it will affect the worst case complexity.

Because the number of trees visited in each iteration of the exhaustive search increases
exponentially, the asymptotic complexity is bounded by the number of trees explored in the
final iteration. It follows that the order in which these trees are searched can have a critical
impact on the running time. We attempt to increase the probability that the tree upon
which the search is completed is visited near the beginning of an iteration by sorting the
trees in each iteration according to how many leaves are eliminated in by subtree reduction.
Our hypothesis is that trees with larger common subtrees are more likely to be near the
destination tree. Since at most n leaves can be eliminated by subtree reductions, the trees
can be bucket sorted in O(n) time, leaving the asymptotic complexity unchanged. These
last two heuristics are employed by replacing the call to ITERATE in SPRDIST to a call
to SORT ITERATE, shown in Algorithm 3.

Algorithm 3 SORT ITERATE(Lin, Lout, H, T)

1: for all t ∈ Lin do

2: Flag all subtrees in t that also occur in T
3: end for

4: Bucket Sort Lin in decreasing order by number of vertices flagged
5: for all t ∈ Lin do

6: if t ∈ H then

7: return TRUE
8: else

9: Append set of SPR neighbors which preserve flagged subtrees of t to Lout

10: Insert t into H
11: end if

12: end for

13: return FALSE

A cluster is the leaf set of a pendant subtree. T1 and T2 share a common cluster C if
they contain pendant subtrees S1 and S2 respectively such that L(S1) = L(S2) = C. In
(Baroni et al. 2006), it was shown that the hybridization number of two trees is equal to the
total of the hybridization numbers of all their pairs of maximal common clusters. In (Beiko
& Hamilton 2006), the authors made a similar assumption in their heuristic algorithm to
measure LGT. Such a decomposition makes intuitive sense for exact SPR distance as well,
as it would seem that any SPR operation that affects more than one common cluster would
not reduce the distance and therefore not be part of an optimal solution. Unfortunately,
this is not the case as evidenced by the counterexample given in Figure 4 which presents T1

and T2 that share the common cluster {7, 8, 9}. dSPR(T1, T2) = 3 and 3 SPR operations are
shown that transform T1 into T2, the first of which breaks the common cluster. Indeed an
exhaustive simulation showed that no 3 sequential SPR operations exist to transform the
trees that do not break the common clusters. This can be more easily seen by observing
that any such sequence would have to regraft 7 to 9 and only 2 operations would be left to
transform the cluster {1, 2, 3, 4, 5, 6} which is clearly insufficient.

8

9

1

2

3 4
5 6 7

8

(a) T1

3

1

2

6 7 85 9
4

(b) {3, 4} is regrafted to {9}

8

1

2

65 93 4
7

(c) {2} is regrafted to {3}

6
1

5

2 3
4 9

7

8

(d)

Figure 4: Example of trees whose common clusters cannot be maintained by a minimal
SPR path. T1 (a) and T2 (b) have a SPR distance of three but all possible sequences of
SPR operations of this length (one is shown by the dotted lines) break the common cluster
{7, 8, 9}.

4 Experimental Results

4.1 Datasets

The datasets were chosen to analyze the merits of the heuristics discussed in the previous
section as well as evaluate our algorithm in a realistic setting. To these ends, we bench-
marked our algorithm on a variety of randomly generated trees, as well as trees created
by (Beiko et al. 2005) in the course of analyzing the proteins from the 144 sequenced
prokaryotic genomes available at the time. Two sets of random trees were generated, one
by the Yule-Harding model and the other by random walks. Yule-Harding trees are con-
structed by first creating an edge between two randomly selected leaves, then randomly
attaching the remaining leaves to the tree until none are left. The random walk dataset
consists of pairs of trees such that one of which is generated by the Yule-Harding model
and the other is created from the first by applying a sequence of between 2 and 8 random
SPR operations (Beiko & Hamilton 2006). The size of the datasets, along with the average
distances computed by our algorithm are presented in Figure 5. In some cases, the pro-
gram ran out of memory before finding the solution. The fraction of instances successfully
resolved for each type of data is listed in the “% Resolved” column.

4.2 Performance

The algorithm described in Section 3 was implemented in C++ and benchmarked on a
2.6Ghz Pentium Xeon System with 3G of RAM. The source code is available at http:

//morticia.cs.dal.ca/lab public/?Download. This program was executed for all pairs
of trees described in Figure 5 with and without the various heuristic optimizations discussed
previously. Graphs (a), (c) and (e) in Figure 6 display the effectiveness of the reduction
rules’ ability to reduce the input trees. As could be expected, the trees in the protein
and random SPR walk datasets are reduced more than the two random datasets as their
ratios of size to distance are much higher. In all cases, the amount of reduction increases in
correlation to the mean distance rather than n. Our method is essentially a fixed parameter
tractability (FPT) approach (Downey & Fellows 1998) and our experiments indicate that

9

 0

 50

 100

 150

 200

 250

 4 5 6 7 8 9 10

N
um

be
r

of
 T

re
e

P
ai

rs

Number of Leaves (n)

Total
Resolved

(a) Yule-Harding Random Pct. Resolved

 0

 1

 2

 3

 4

 5

 4 5 6 7 8 9 10

dS
P

R

Number of Leaves (n)

Min/Mean/Max - Distance

(b) Yule-Harding Random Distances

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 T

re
e

P
ai

rs

Number of Leaves (n)

Total
Resolved

(c) Simulated SPR Walk Pct. Resolved

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70 80 90 100

dS
P

R

Number of Leaves (n)

Min/Mean/Max - Distance

(d) Simulated SPR Walk Distances

 0

 50

 100

 150

 200

 250

 300

 20 25 30 35 40 45 50 55 60

N
um

be
r

of
 T

re
e

P
ai

rs

Number of Leaves (n)

Total
Resolved

(e) Protein Pct. Resolved

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40 45 50 55

dS
P

R

Number of Leaves (n)

Min/Mean/Max - Distance

(f) Protein Distances

Figure 5: Size, success rate and distance distributions for each dataset. For the protein
data, no trees of size greater than 60 were resolved.

10

the running time behaves similar to FPT algorithms. Also encouraging is the fact that
the reduction rules perform much better in practice than the worst-case analysis in (Allen
& Steel 2001), which predicts a reduction in size to a factor of 28 times the distance. For
example, in the random SPR walk dataset whose mean distance is roughly 2, the reductions
are effective for n > 4 whereas in the worst case it is only guaranteed to work for n >= 56.
Similar results are visible in the protein dataset graphs as well. As can be seen in these
graphs, chain reductions accounts for only a small portion (well under 10%) of the overall
gain with subtree reductions making up the rest. We also note that of the roughly 20,000
pairs of trees tested, application of the chain reduction rule did not once affect the SPR
distance.

The performance of the remaining heuristics is displayed in terms of running time in
graphs (b), (d) and (f) in Figure 6. Applying the reductions to intermediate trees provided
very little performance gain, implying that the search space is dominated by trees with few
common subtrees and chains. However, sorting the trees visited in each iteration of the
search by the number of leaves reduced had a significant impact on the running time for
all of the harder cases (dSPR ≥ 4), speeding up the computation by nearly a factor of 6 for
some of the larger protein tree pairs.

5 Conclusion

The computation of SPR distances between unrooted phylogenetic trees can be used to
compare the evolutionary histories of different genes and provide a lower bound on the
number of lateral transfers. Little previous work has been done on this problem though
many related tree metrics have been relatively well studied in the literature. The reason
for this appears to be primarily due to less insight into the problem’s structure (no known
MAF reduction) rather than lack of interest. In this paper we revisited the problem of
unrooted SPR distance, showing that it is NP-Hard and providing an optimized algorithm
and implementation to solve it exactly. The algorithm is based on dividing the problem into
two searches and making use of heuristics such as subtree reductions and reordering. This
algorithm was able to quickly compute the exact distance between the majority of proteins
belonging to 144 available sequenced prokaryotic genomes and their supertree. Our method
can also be used to improve the brute force search component of TBR and rooted SPR
distance computation.

Though a polynomial time solution is unlikely due to its NP-Hardness, some possible
avenues of future work on this problem remain. One is to show that chain reductions do not
affect the distance, a conjecture that is supported by our experimental results but for which
an analytical proof remains absent. This result would be sufficient to show that unrooted
SPR distance is fixed parameter tractable, being exponential only in terms of the distance
and not the size of the trees. In (Bordewich et al. 2007), a decomposition by common clusters
was used with significant practical success. We showed that such a technique cannot be
directly applied to the problem of unrooted SPR distances but perhaps a variation of this
technique can.

Acknowledgment

This research partially supported by the Natural Sciences and Engineering Research Council
of Canada and Genome Atlantic.

11

 0

 2

 4

 6

 8

 10

 4 5 6 7 8 9 10

N
um

be
r

of
 L

ea
ve

s
A

fte
r

R
ed

uc
tio

ns

Number of Leaves in Input (n)

No Reductions
Min/Mean/Max - Subtree Reductions

Min/Mean/Max - Chain & Subtree Reductions

(a) Yule-Harding Random

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 4 5 6 7 8 9 10

M
ea

n
W

al
l T

im
e

(s
)

Number of Leaves (n)

No Heuristics
Intermediate Subtree Reductions

Intermediate Subtree Reductions & Sorting

(b) Yule-Harding Random

 0

 20

 40

 60

 80

 100

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 L

ea
ve

s
A

fte
r

R
ed

uc
tio

ns

Number of Leaves in Input (n)

No Reductions
Min/Mean/Max - Subtree Reductions

Min/Mean/Max - Chain & Subtree Reductions

(c) Simulated SPR Walk

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 20 30 40 50 60 70 80 90 100

M
ea

n
W

al
l T

im
e

(s
)

Number of Leaves (n)

No Heuristics
Intermediate Subtree Reductions

Intermediate Subtree Reductions & Sorting

(d) Simulated SPR Walk

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60

N
um

be
r

of
 L

ea
ve

s
A

fte
r

R
ed

uc
tio

ns

Number of Leaves in Input (n)

No Reductions
Min/Mean/Max - Subtree Reductions

Min/Mean/Max - Chain & Subtree Reductions

(e) Protein

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40 45 50 55

M
ea

n
W

al
l T

im
e

(s
)

Number of Leaves (n)

No Heuristics
Intermediate Subtree Reductions

Intermediate Subtree Reductions & Sorting

(f) Protein

Figure 6: Experimental evaluation of the different heuristics on the three datasets. The
effect of the reduction rules on the input tree sizes is displayed on the left. The improvements
to the running time made by reducing and sorting intermediate trees are displayed on the
right.

12

References

Allen, B. L. & Steel, M. 2001. Subtree transfer operations and their induced metrics on
evolutionary trees, Annals of Combinatorics 5(1):1 – 15.

Baroni, M., Semple, C. & Steel, M. 2006. Hybrids in real time, Systematic Biology 55(1):46–
56.

Beiko, R. G. & Hamilton, N. 2006. Phylogenetic identification of lateral genetic transfer
events, BMC Evolutionary Biology 15(6).

Beiko, R. G., Harlow, T. J. & Ragan, M. A. 2005. Phylogenetic identification of lateral
genetic transfer events, Proc. Natl. Acad. Sci. USA 102:14332–14337.

Bordewich, M., Linz, S., John, K. S. & Semple, C. 2007. A reduction algorithm for com-
puting the hybridization number of two trees, Evolutionary Bioinformatics 3:86–98.

Bordewich, M. & Semple, C. 2004. On the compuational complexity of the rooted subtree
prune and regraft distance, Annals of Combinatorics 8(4):409 – 423.

Doolittle, W. F. 1999. Phylogenetic classification and the universal tree, Science 284:2124–
2128.

Downey, R. & Fellows, M. 1998. Parameterized Complexity, Springer-Verlag.

Garey, M. R. & Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman and Company.

Hein, J., Jiang, T., Wang, L. & Zhang, K. 1996. On the complexity of comparing evolu-
tionary trees, Discrete Applied Mathematics 71:153–169.

Appendix

A X3C Remains NP-Complete when Each Element Occurs

in Exactly 3 Subsets

In this appendix we verify that X3C remains NP-Complete in the special case where each
element occurs in exactly three subsets. Consider an instance of X3C in which no element
occurs in more than three subsets. We provide a polynomial time reduction from such
an instance, known to be NP-Complete, into an instance in which each element occurs in
exactly three subsets. Let:

Y1 ⊆ X : Elements of X that appear in exactly one subset
Y2 ⊆ X : Elements of X that appear in exactly two subsets
Y3 ⊆ X : Elements of X that appear in exactly three subsets

So |Y1|+ 2|Y2|+ 3|Y3| = |X| = 3q

For each element to appear in exactly three subsets, we must add 2|Y1| + |Y2| elements to
subsets in C.

13

Let multiset Z = {z0, z1, . . . , z3p−1} = Y1 + Y1 + Y2 be these elements we have to add. Note
that |Z| = 3p where p = 2(q − |Y3|)− |Y2|.

Let X ′ = {x′
0, x

′
1, . . . , x

′
3p−1} be a set of new elements such that |X ′| = 3p and X ∩X ′ = ∅.

We now create a collection C ′ of new subsets out of Z and X ′ so that each element in X∪X ′

appears in a subset in C + C ′ exactly three times.

For each i = 0, 3, . . . , 3p− 1, we add four subsets to C ′:
c′4i = {x′

i, x′
i+1, x′

x+2}
c′4i+1 = {zi, x′

i, x′
i+1}

c′4i+2 = {zi+1, x′
i+1, x′

i+2}
c′4i+3 = {zi+2, x′

i+2, x′
i}

We now show that X ∪X ′ and C + C ′ form an instance of X3C such that every element of
X ∪X ′ appears in 3 subsets in C + C ′ and X has a cover in C if and only if X ∪X ′ has a
cover in C + C ′.

(if): If X has a cover in C, then X ∪X ′ has a cover in C + C ′: Let S ⊆ C be the cover of
X. Then S + c′0 + c′4 + c′8 + . . . + c′12p−1 is a cover X ∪X ′.

(only if): If X ∪X ′ has a cover in C + C ′, then X has a cover in C: Similar to above, the
only way to cover X ′ is with c′0 + c′4 + c′8 + . . . + c′12p−1 and no other elements of C ′ can
be part of an exact cover. This means that X is covered entirely by subsets in C so X is
exactly covered by C.

14

